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Abstract

The classical shock layer theory assumes that the coefficients of axial dispersion and of mass transfer kinetics are constant.
Experimental results have shown that this assumption is not always valid. The influence of a linear dependence of these
coefficients on the concentration is investigated. The shock layer theory is easily extended to this case and an analytical
solution is reported. Changes in the shape of the breakthrough curves and in the thickness of the shock layer are discussed.
Excellent agreement was observed between the results of numerical calculations of breakthrough curves and the shock layer
thickness derived from the analytical solution. The agreement found with experimental results previously reported was also

excellent. © 1997 Elsevier Science BV.
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1. Introduction

The modeling of the band profiles obtained in
non-linear chromatography is best carried out with
the simplest model that affords realistic results [1].
In most instances, the efficiency achieved in high-
performance liquid chromatography (HPLC) is high.
This justifies considering axial dispersion as a cor-
rection to the predictions of the ideal model and
using the equilibrium-dispersive model [1]. With this
model, apparent axial dispersion is due to the
combination of the effects of the axial concentration
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gradients (axial diffusion), of convection in the
mobile phase percolating through the column bed
(eddy diffusion) and of the finite rate of mass
transfers across the column. While the influence of
the first two terms remains small in practically all
cases encountered in laboratory or industrial applica-
tions of HPLC, this is not true of the last one. When
the retention mechanism involves the formation of
strong chemical bonds (e.g., complexation) or of
multi-site interactions (e.g., adsorption or ion-ex-
change of polymers, such as proteins), the kinetics of
adsorption/desorption tends to become slow. Large-
size molecules have low diffusivities and their
migration across the network of pores of porous
particles or the network of cross-linked polymeric
chains in resin particles tends to be slow. For these
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reasons, more sophisticated kinetic models must be
used.

The concept of shock layer is germane to lumped
kinetic models. If, as is the most common case, the
equilibrium isotherm is convex upwards, the high
concentrations of a breakthrough curve move faster
than the low ones [1]. The profile is self-sharpening.
In the absence of axial dispersion, a vertical con-
centration profile or shock would be recorded. Under
non-ideal conditions, a balance between the self-
sharpening trend caused by the non-linear thermo-
dynamics on the one hand and the apparent axial
dispersion, originating from axial diffusion, eddy
dispersion and the finite rate of mass transfers, on the
other hand is reached progressively. The most
powerful theoretical tool available for the study of
the propagation of these self-sharpening fronts in
chromatography is the shock layer theory, suggested
originally by Rosen [2], used by Glueckauf [3], and
developed by Rhee et al. [4], Rhee and Amundson
[S] and by Gorius et al. [6]. Although this steady-
state profile is asymptotic [4,5], in practice, it is
reached after a relatively short migration distance
[7,8]. Simple considerations developed by Rhee et al.
[4,5] have lead them to define a shock layer thick-
ness (SLT) that characterizes the combined influence
of the various sources of non-ideal behavior on the
band profile. The SLT is a function of the axial
dispersion coefficient and of the rate constant of
mass transfer. Thus, the SLT is a very convenient
parameter to characterize the apparent column dis-
persion in non-linear chromatography. In this area, it
should play a role similar to the one of the height
equivalent to a theoretical plate (HETP) in ana-
lytical, i.e., linear chromatography.

In all kinetic models of chromatography, however,
the parameters describing the mass transfer kinetics
are traditionally assumed to be constant. There is
increasing experimental evidence that this not always
the case [9-14]. Significant dependence of the
coefficients of mass transfer and of the diffusivity on
the concentration in the range of concentrations used
in preparative chromatography was reported recently
by different authors [12-14], using a variety of
systems. The concept of SLT has been proven so
useful [1] that it is important to discuss the possi-
bility of its extension to cases where the coefficients
of axial dispersion and of mass transfer kinetics are
concentration-dependent.

In this paper, we present a detailed discussion of
the extension of the shock layer theory to the case in
which the coefficients of the mass transfer kinetics
and the axial dispersion depend on the concentration.
The linear dependence suggested by experimental
results [14] has been adopted. Following the original
approach of Rhee et al. [4,5], an algebraic solution
could be derived, as recently suggested [15-19]. Its
properties are studied and discussed. This algebraic
solution was also compared to numerical solutions of
the same model, which include no simplifications.

2. Theoretical

First, we present briefly the transport-dispersive
model, a simple non-equilibrium model of chroma-
tography, including convection, axial dispersion and
lumped mass transfer kinetics in the stationary phase.
Then, we show how the shock layer theory can be
extended to cases in which the Peclet and Stanton
numbers are both functions of the solute concen-
tration.

2.1. Transport-dispersive model

2.1.1. Differential mass balance equation of
chromatography
This equation is written

ot or %oz T ez Loz )

where C and g are the concentrations of the sample
in the mobile and the stationary phase, respectively, z
and ¢ are distance and time, respectively, F is the
phase ratio (F=(1—¢g)/e, with & being the total
column porosity), u is the mobile phase velocity and
D, is the axial dispersion coefficient which, in this
case, depends linearly on the concentration.

2.1.2. Mass transfer kinetics
We consider a solid film linear driving force
model to represent the kinetics [1]

ﬂ“k * 2
o = klg*—q) (2)

where k is the overall mass transfer rate coefficient,
a function of the mobile phase concentration, and g*
is the adsorbed phase concentration of the solute
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when the stationary phase is in equilibrium with the
mobile phase concentration, C, as given by the
isotherm. When k,—, there is increasingly fast
equilibration between the two phases. The limit,
k,=o, corresponds to the achievement of instanta-
neous equilibrium between both phases. The ideal
model corresponds to both k, =< and D, =0.

2.1.3. Equilibrium isotherm
The Langmuir isotherm is used to account for the
adsorption equilibrium

s 9C q
7= T¥6C (3)

Its numerical coefficients, a and b, are independent
of the concentration.

2.1.4. Concentration dependence of D, and k,

The results of experimental observations [13,14]
suggest that a linear relationship is valid in a rather
wide concentration range. Accordingly, we assume
in this work a linear dependence of the axial
dispersion coefficient and the rate coefficient on the
concentration, with

D, =D)+D|C (4a)

ke =k +k;C (4b)

where D(ﬁ, D{, k{ and k; are numerical coefficients.
Accordingly, the Peclet and Stanton numbers
become related to the concentration through
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with Pe’=uL/D), Pe'=D|ID}, St"=k!L/u and
St' =k} 1k},

2.1.5. Initial and boundary conditions
The initial and boundary conditions of the problem
correspond to a column that is initially filled with

mobile phase at a concentration, C’ (usually equal to
0), and to the step injection of a solution of the
component at a concentration, C', respectively. The
boundary condition includes the classical Danck-
werts condition, as applied classically in chromatog-
raphy [1].

These conditions are written

Ciz,0)=0

aC |
uC(0, ) — D, N 0,)=uC fort=0

aC
S Ln=0 (5)

2.1.6. Dimensionless svstem of equations

The system of Egs. (1)—(5), (5) states the trans-
port-dispersive or lumped kinetic model for con-
centration-dependent axial dispersion and mass trans-
fer rate coefficients. It is convenient for the follow-
ing discussion to recast these equations under dimen-
sionless forms

I HC 0 (1Y, iy ;
or ox ox \Pe ox or (6)
99 _ ook

ar =~ SHqT —q) (7

with the following dimensionless variables and pa-
rameters:

t
T= uf (8a)
x= % (8b)
L
Pe =" (8¢)
DL
kL
St = v (8d)

This system can be solved numerically, using an
appropriate calculation method. A finite difference
method was used in this work [1,18-20]. Provided
that some simplifying assamptions are made, an
analytical solution can be derived, using the classical
shock layer theory [5].

2.2. Shock layer theory

The same approach followed in the classical shock
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layer theory can be applied when the parameters of
the system of Egs. (1)-(3), (4a)—(4d), (5) are
concentration-dependent. As in the case of constant
coefficients, we look for an asymptotic solution of
the system of Egs. (6) and (7). Assuming that this
solution exists [4,5], the concentration profile should
move along the column unchanged in shape, as a
constant pattern migrating at a constant dimension-
less velocity, A. A coordinate transform allows the
use of a moving coordinate system

E=x— AT (9)

The constant migration velocity, A, of the profile in
the reduced coordinate system will be shown later to
be equal to the reduced velocity of the shock in the
ideal model. With this transform, ¢ and C become
functions of the coordinate ¢ alone. For an asymp-
totic solution, the boundary conditions are

Cé=~»)=C",

9C B _aq _ B (10a)
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Egs. (6) and (7) can be combined following the
procedure described by Rhee et al. [4,5] and rear-
ranged into the equation
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Integration of Eq. (11) gives the asymptotic con-
centration profile. Unfortunately, it is not possible to
integrate this equation in the general case. Following
Rhee et al. [4,5], we neglect the first term on the left
hand side (LHS) of Eq. (11). This simplification is
necessary to permit the integration of Eq. (11). It
requires that the product Pe St be very large. The
validity of this assumption under typical conditions
of non-linear HPLC has been discussed previously
[1]. It was shown that this requirement is satisfied in
most practical cases encountered in preparative

chromatography. The validity of the assumption is
illustrated by the excellent agreement observed be-
tween the numerical and the analytical solutions
presented later, in Section 3.

Applying the boundary condition of Eq. (10b) to
Eq. (11) (8C/9£=0) gives the value of A

K0\ -1

A =( |+ F q—,-—q—r> (12)
c-C

Eq. (12) shows that A is the dimensionless shock

layer velocity, which is consistent with the initial

assumption (Eq. (9)). The actual migration velocity

of the shock layer (e.g., in m/s) is

u, = Au (13)

The shock layer velocity does not depend on the
axial dispersion coefficient nor on the rate coefficient
of the mass transfer Kkinetics, whether these co-
efficients are constant (as assumed by Rosen [2],
Glueckauf [3], Rhee et al. [4] and Rhee and Amund-
son [5]) or concentration-dependent (as assumed
here). It is a function of the concentration solely
through the isotherm (Eqgs. (3) and (12)) and it is the
same as the velocity of the shock in the ideal model.

Since we are interested in the concentration profile
of the breakthrough curve in the region where the
concentration varies significantly, we define this
region of interest through two intermediate con-
centrations, C'* and C™, corresponding respectively
to the initial and the final concentrations of the
profile in the range considered. These concentrations
are defined as follows

C=C'+ecC —-ch (14a)

cCt=C"-61cC" -Ch (14b)

where 6 is smaller than 0.5. In numerical and
experimental applications, 6 is usually taken as being
equal to 0.05. The SLT is defined as the distance
between these two concentrations in the asymptotic
profile. From Eq. (11), simplified as discussed
above, the SLT is given by the following equation

A —fm[ ! ’\(1_)‘)] ¢, ', cydc
=)o | Py T Tswey |GG CL0

(15)

where G~ '(C, C', C" is a function of the isotherm
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and of the initial (C ') and final (C") concentrations of
the breakthrough profile [4,5]. This equation is
simple to integrate in the case of a Langmuir
isotherm, whether in the case of constant coefficients
[6-8] or in the case of coefficients that depend
linearly on the concentration (Egs. (4a)~(4d)). Using
conventional algebraic manipulations, the following
equation giving the thickness of the shock layer is
derived from Eq. (15)

1
1+ ' pl
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where R'=1/(1+5C").

The concentration profile of the component in the
shock layer as discussed above is a concentration
profile along the ¢ axis. Its thickness, given by Eq.
(16), is measured along this axis. It is easy to derive
from this expression the thickness of the break-
through curves expressed in different units, e.g.,
column length, time, or reduced-time units. Depend-
ing on the nature of the experiments performed, one
expression may be more convenient for practical
purposes. In the following discussion, we use re-
duced-time units and the SLT is given by

Ar=—A¢ 17)

When the axial dispersion coefficient and the rate
of the mass transfer kinetics are both independent of
the concentration, Pe' =St' =0 and Eq. (16) reduces
to

1+ R 1 I Ml—=X
Af: 1 1+ 7 ol ot 0
1-R kiR') L Pe St

1—6
Xln( 9 (18)

which is exactly the same equation as the one
derived directly in the case of constant Peclet and
Stanton numbers [1,4,5,7,8].

3. Illustrations and discussion

Calculated breakthrough curves were obtained
corresponding to a variety of experimental conditions
illustrating the influence on the shock layer profiles
of the concentration dependence of the axial disper-
sion coefficient and the rate of the mass transfer
kinetics for a wide range of values of the different
coefficients. The SLTs were calculated either from
the numerical solutions of the system of Egs. (1)~
(3), (4a)—(4d), or from the algebraic solution (Eq.
(16)) of the asymptotic Eq. (11). The results are
compared in order to validate the analytical, asymp-
totic solution.

The values of the parameters used in the calcula-
tions are: F=0.449; C'=0, C'=25 mg/ml (kg/m”);
a=12 and »=0.024 ml/mg (m’/kg). The break-
through curves are plotted as concentration versus
the reduced time, defined as 7=t/1,,, where r,=L/u
is the hold-up time of the column.

3.1. Velocity of the shock layer

Eq. (12) shows that the velocity of the shock
layer is constant. As long as the axial concentration
profile is a constant pattern, all of its points move
along the column at the same velocity. However,
because of the finite thickness of the shock layer,
only one point of the concentration profile elutes at
the same time as the shock of the ideal model, i.e.,
with a retention time equal to 1/A=1+FAq/AC,
corresponding to the equilibrium isotherm. This
point is usually not identical to the half-height of the
breakthrough curve. Its relative height depends on
the value of the two coefficients D, and k;, hence it
is affected by their concentration dependence. This
implies that deriving isotherm data from the retention
time or volume of a particular point of the break-
through curve is erroneous, as has been observed
experimentally long ago [21]. The only correct
procedure to define and measure the retention time of
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the breakthrough curve is through an integral mass
balance, using the moment or area method, which
affords the exact retention time [15,16] and gives
accurate isotherm data.

In the numerical results presented here, the re-
duced velocity of the shock layer, A, is 0.23. The
dimensionless retention time of the breakthrough
curve is to/ty=L/(ut,)=1/A=4.37. The break-
through curves shown in all figures have that same
retention time.

3.2. Breakthrough curves and shock layer
thickness

One of the important features of Eq. (11) is that,
once the first term on the LHS is neglected, the roles
played by the Peclet and the Stanton numbers are
symmetrical. The same result is of course observed
in Eq. (16). The contributions to the SLT due to
mass transfer kinetics (S¢) and to axial dispersion
(Pe) are additive. Accordingly, these two parameters
can be conveniently discussed separately and succes-
sively, which simplifies the study of their influence
and clarifies the presentation of the results. The total
effect of these two phenomena can be obtained by
the addition of their respective contributions.

3.2.1. Shock layer thickness caused by axial
dispersion (St=cc)

We present briefly the results obtained with con-
stant coefficients. Then we study the influence of the
concentration dependence of the Peclet number by
comparing profiles obtained with different relation-
ships between the axial dispersion coefficient and the
concentration (i.e., different coefficients in Eqs. (4a)
and (4c)) but with the same initial or final value of
the Peclet number.

3.2.1.1. Constant Peclet number

The SLT for breakthrough curves with different
constant values of Pe is shown in Fig. 1 for € from
0.1 to 20%. The corresponding breakthrough curves
are shown in the inset. The SLT increases with
decreasing Peclet number and with decreasing value
of 8. As expected, there is an excellent agreement
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Fig. 1. Comparison of the shock layer thickness derived from the
analytical solution and from numerical calculations. The lines
represent the analytical solution for different values of 6. The
symbols represent the results of numerical calculations. The
following values of ¢ were used for measuring the shock layer
thickness: long-dashed line and X. 0.001; short-dashed line and
0, 0.01; dotted line and +, 0.05: solid line and <, 0.2. Inset:
breakthrough curves from numerical calculations. Solid line, Pe =
50; dotted line, 100; short-dashed line, 200: long-dashed line, 400.

between the values of the SLT derived from the
analytical solution in Eq. (16) (lines) and from the
profiles obtained by numerical calculation (symbols).

3.2.1.2. Same initial or final value of Pe

Fig. 2a shows breakthrough curves calculated
with the same initial value of Pe (Pe®=500), but
with different values of Pe', all of which were
negative. In this case, Pe decreases with increasing
concentration and the breakthrough curves become
quite unsymmetrical, while they are nearly
symmetrical in the case in which Pe is constant and
equal to 500 (solid line). The upper part of the
breakthrough curve is more diffuse than the lower
part. The difference between the upper and lower
parts of the curve increases with increasing absolute
value of Pe'. The converse case (Pe'>0) is illus-
trated in Fig. 2b. Then, Pe increases with increasing
concentration and reaches the same final value, Pe =
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Fig. 2. Shock layer thickness caused by axial dispersion. Same initial or final values of Pe(C). (a) and (b), Breakthrough curves obtained
from numerical calculations. The constant initial (a) or final (b) value of Pe is 500. Solid line, constant Pe =500; dotted line, 500300 or
300—500; short-dashed line, 500—200 or 200—>500; middle-dashed line, 500—100 or 100->500; long-dashed line, 500—75 or 75—500;
dash-dotted line, 500—50 or 50—500. (c) and (d), Comparison of the values of the shock layer thickness derived from the analytical
solution (lines) and from the breakthrough curves resulting from numerical calculations and shown in Fig. 2a (c) and Fig. 2b (d). The
average value of Pe varies from 91 to 500. Lines and symbols as in Fig. 1.

500. The breakthrough curves are also unsymmetri- In both cases, the SLT decreases with increasing
cal and increasingly so when Pe' increases. The average value of Pe, as shown in Fig. 2¢,d. However,
lower part of the curve is the more diffuse. for the same average value of Pe, the SLT of the
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breakthrough curves obtained is nearly twice as large
when Pe decreases during the elution of the break-
through curve (Fig. 2c¢) than when it increases during
this elution (Fig. 2d). In the former case, the values
of the SLT obtained from numerical solutions (sym-
bols) are slightly smaller than those predicted by Eq.
(17) (lines, Fig. 2c), while the converse is true in the
latter case (Fig. 2d). The effect is noticeable only at
low average values of the Peclet number.

3.2.2. Shock layer thickness caused by mass
transfer kinetics (Pe =)

We consider now the influence on the SLT of the
concentration dependence of the sole rate coefficient
of the mass transfer kinetics, as characterized by the
Stanton number, St=k.L/u. The results obtained are
quite similar to those calculated in the study of the
influence of the concentration on the dispersion
coefficient alone. We present briefly the results
obtained with constant coefficients and then discuss
the influence of the concentration dependence by
considering cases in which the initial or final value
of the Stanton number are the same.

3.2.2.1. Constant Stanton number

As in the study of the Peclet number, larger values
of St or @ give sharper breakthrough profiles, hence
smaller SLTs, as illustrated in Fig. 3. The corre-
sponding breakthrough curves are shown in the inset.
Note that in preparative chromatography, u is usually
of the order of 0.1 cm/s, L is of the order of 30 cm
and, unless k, is abnormally small, Sz will most often
exceed one or several hundreds.

3.2.2.2. Same initial or final value of the Stanton
number

Breakthrough curves calculated with linearly de-
creasing values of the Stanton number, starting from
the same initial value (St=150) are shown in Fig. 4a.
Similar curves, calculated with linearly increasing
values of St ending with the same value, St=50, are
shown in Fig. 4b. The corresponding values of the
SLT are plotted versus the average value of St in Fig.
4c—d, respectively. As was observed in the study of
the influence of the Peclet number, the curves
become increasingly unsymmetrical when the change
in value of St during the experiment becomes
important. The upper part of the breakthrough curve
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0 J

0 50 100 150 200 250 300 350 400
St

Fig. 3. Comparison of the shock layer thickness derived from the
analytical solution (lines) and from numerical calculations (sym-
bols). St ranges between 5 and 400. The lines represent the
analytical solution for different values of 6. The symbols represent
the results of numerical calculations. Symbols and lines as in Fig.
1. Inset: Breakthrough curves obtained from numerical calcula-
tion. St=35, solid line; 10, dotted line; 20, short-dashed line; 40,
middle-dashed line; 80, long-dashed line; 400, dash-dotted line.

is more diffuse than the lower one when the Stanton
number decreases during the experiment, at a con-
stant average value of St (Fig. 4a), while the
converse is true when the Stanton number increases
during elution (Fig. 4b). The shock layers are thicker
in the former case (Fig. 4c) than in the latter (Fig.
4d), especially at large values of 6. In both cases,
there is an excellent agreement between the values of
the SLT derived from the numerical solutions of the
equation system (symbols) and those predicted by
Eq. (16) (lines).

3.2.3. Comparison of the effects caused by axial
dispersion (St =) and by mass transfer kinetics
(Pe=x)

A comparison of Figs. 1 and 2c,d shows that, at a
constant average value of the Peclet number, the
SLT is smaller when Pe increases during the experi-
ment (Fig. 2d) than when it decreases (Fig. 2c). The
values of the SLT corresponding to a constant Peclet
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Fig. 4. Shock layer thickness caused by mass transter kinetics. Same initial or final value of St. (a) and (b), Breakthrough curves obtained
from numerical calculations. The initial (a) or final (b) value of Sz is 50. Solid line, constant St=50; dotted line, 50—30 or 30-»50;
short-dashed line, 50—20 or 20—>50; middle-dashed line, 50— 10 or 10—>50; long-dashed line, 50—5 or 5—50. (c) and (d). Comparison of
the values of the shock layer thickness derived from the analytical solution (lines) and from numerical calculations (symbols) for the profiles
in Fig. 4a (c) and Fig. 4b (d). Average value of St was between 27.5 and 50. Lines and symbols as in Fig. 1.

number (Fig. 1) are intermediate. These conclusions averaging of the influence of the concentration-de-
are confirmed by examination of Eq. (16). The pendent axial dispersion coefficient, D,, over the
average Peclet number is calculated as 2{[Pe(0)] "~ '+ entire concentration step (Eq. (4a)).

[Pe(CH1™ "Y', which represents an arithmetic A comparison of Figs. 3 and 4c¢,d shows that, at a
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constant average value of the Stanton number, the
SLT is smaller when St increases during the experi-
ment (Fig. 3d) than when it decreases (Fig. 3c).
However, the SLT obtained at a constant St number
is still smaller than the value obtained for an
increasing Stanton number (with the same average
number). Examination of Eq. (16) confirms that the
SLT (for the same average value of Sr) is always
larger if St 40 than if Sz, =0. The average of the
Stanton number is given by [S1(0)+S#(C')]/2, which
represents an arithmetic average of the rate constant,
k,, for the highest and lowest concentrations in the
step injection (Eq. (4b)), in agreement with ex-
perimental results [14]. Even though a definition of
an average value is somewhat arbitrary, it is useful to
compare different breakthrough curves obtained with
different concentration dependencies of the coeffi-
cients. This issue is discussed in more detail in the
following.

Fig. 5 shows the SLT calculated from Eq. (16),
for three different values of the parameter b =0.024,

2.5 T
b=0.024 ——
b=0.048 -
b=0.096 -
2 - -
15 + \\\\\ ~— -
5
= | e N,
- .
& =
1+t e ) _
05 f T .
0 L 1 L
-400 -200 0 200 400

APe

Fig. 5. Dependence of the SLT on the extent of the concentration
dependence of Pe. The average value of Pe has been kept
constant. Pe, =88.9, a=12, C'=25. SLT calculated for different
values of »=0.024, 0.048, 0.096 ml/mg, §=0.001.

0.048 and 0.096 ml/mg as a function of APe=
Pe(C‘)—Pe(O). The value APe determines the extent
or strength of the concentration dependence. It is
negative when the Peclet number decreases with
increasing concentration, positive when the Peclet
number increases with increasing concentration, and
zero for a constant Peclet number. All values of the
SLT are reported to the average value of the Peclet
number (as defined earlier, here Pe, =88.9). We can
see that when the Peclet number decreases with
increasing concentration (APe<<0), the band is
broader than when it increases. The SLT is larger in
the former case (i.e. Pe' <0) than in the latter (i.e.
Pe’>ID). In the case in which the Peclet number
remains constant (Pe' =0), the value of the SLT is
intermediate. This is true for all values of b. The
b-value is seen to have merely a sharpening in-
fluence on the breakthrough curve; the SLT is
smaller for larger b-values, the general conclusions
derived above remaining unchanged'. The same is
true in the case of an increasing value of C l, which
has an effect similar to that of an increase of b (not
shown), i.e., it enhances the non-linear effects. In the
constant case (Pe' =0), one would obtain the same
result for the SLT by either modifying C' or b
because the product b C' is the important parameter
characterizing the intensity of non-linear behavior.
However, in the concentration-dependent case, the
parameter C' also influences the SLT through the
concentration dependence of the coefficients (see
Eqgs. (4a)—(4d)).

Fig. 6 illustrates the dependence of the SLT,
calculated from Eq. (16) for different values of b and
the same average value of the Stanton number S, =
50, on ASt=S1C l)-—St(O). The results observed are
different from those found with the Peclet number.
When the Stanton number decreases with increasing
concentration, the SLT increases with increasing
concentration, which is unfavorable, but the same is
also true when the Stanton number increases with
increasing concentration (StI >0). However, the

"The problem becomes irrelevant for extremely Jarge values of b.
When b—x, either g=a/b is constant, in which case t(C=
0)—= and the isotherm becomes rectangular, or a remains finite,
in which case g—0 and the retention disappears.
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Fig. 6. Dependence of the SLT on the extent of the concentration
dependence of St. The average value of St has been kept constant.
$t,,=50, a=12, C'=25. SLT for different values of 5=0.024,
0.048, 0.096 ml/mg, #=0.001.

curves tend to be very flat around the center,
meaning that slowly increasing St numbers cause
only moderate changes of the SLT (see the minima
of the curves in Fig. 6). A large b-value causes a
decrease in the SLT. However, the location of the
minimum value of the SLT tends to drift towards
higher values of ASz when b increases. The effect of
a change in C' is similar to that of changing b (not
shown) because, as already mentioned, the product b
C' is the important parameter, characterizing the
intensity of the non-linear effects.

These results show that the two classical, simple
models of chromatography, the equilibrium-disper-
sive model (k,—°) and the transport model (Pe—x)
give different conclusions regarding the band
broadening effects if their coefficients depend on the
concentration. In other words, the two models are not
equivalent and will not give the same band profiles,
even if the coefficients have been properly identified
and adjusted to give the same results under linear
conditions. This conclusion is the same as was

previously derived [22,23] but it is achieved follow-
ing an entirely different approach. It can be further
substantiated by a comparison of the terms in Eq.
(16) including Pe' (first line) with those including
St' (second line). They are certainly quite different.

Finally, it is worth noting that it is possible to
derive from Eq. (11) not only the SLT (Eq. (16)) but
also the relationship between the local concentration,
C, and the reduced coordinate, &, i.e., the equation of
the whole concentration profile of the shock layer (in
reduced or dimensionless coordinates). However, this
equation is complex to use in the case of con-
centration-dependent axial dispersion and mass trans-
fer rate coefficients. It will not be discussed further
here.

4. Conclusion

The classical shock layer concept was easily
extended to the case in which the coefficients of
axial dispersion and the mass transfer kinetics de-
pend linearly on the sample concentration. A more
complex (i.e., a non-linear) concentration depen-
dence could be handled following the same pro-
cedure. Depending on the problem studied, numeri-
cal solutions of the band profiles or the algebraic
equations giving the band profile and the SLT can be
used. A comparison of the results derived from the
algebraic equation giving the SLT and of those
derived from numerical solutions of the lumped
kinetic model gave excellent agreement. Thus, tools
are available for a systematic study of the con-
centration dependence of the coefficients of models
of chromatography from breakthrough curves.

These breakthrough curves become increasingly
unsymmetrical when the coefficients of axial disper-
sion and the mass transfer kinetics depend more
strongly on the sample concentration and the changes
in value experienced by these coefficients during an
experiment increase. The asymmetry has an im-
portant effect on the thickness of the shock layer.
The symmetry of the roles played under linear
conditions by the two causes of band broadening,
axial dispersion and mass transfer resistances, is not
maintained under non-linear conditions.



206
5. Symbols

a, b

Q™

o
- ‘o
Een

k,=Fa

L
Pe=uL/D,
Pe,,

Peo, Pe'

Greeks
e
A
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first and second parameters of the
Langmuir isotherm, 1, m3/kg
liquid-phase concentration of the com-
ponent, kg/m’

left and right boundary concentrations,
kg/ m’

start and end concentrations of the
shock layer, kg/m’

axial dispersion coefficient, m>/s
constant and concentration-dependent
parts of the dispersion coefficient, m*/
S, ms/(s kg)

phase ratio

function defined by Eq. (11)

mass transfer coefficient, 1/s
constant and concentration-dependent
parts of the rate coefficient, 1/s, m’/ (s
kg)

retention factor at infinite dilution
column length, m

Peclet number

average Peclet number

constant and concentration-dependent
parts of the Peclet number, 1, m’/kg
solid-phase concentration, kg/ m’
solid-phase concentration at equilib-
rium, kg/ m’

=1 /(1+bC)

=kL/u, Stanton number

average Stanton number

constant and concentration-dependent
parts of the Stanton number, m’/kg
=time, S

liquid-phase flow velocity, m/s
shock layer propagation velocity, m/s
=z/L dimensionless axial position in
the column

axial position in the column, m

total column porosity

reduced propagation velocity of the
shock layer

=ut/L dimensionless time

0 Parameter defining the shock layer
thickness (Eqs. (14a) and (14b))

3 coordinate transform parameter in Eq.
(9

A¢ SLT in the reduced coordinates sys-
tem

T SLT in reduced time units (¢/¢,)
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